Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 60(1): 55-64, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38055154

RESUMO

Plant hosts and their viral pathogens are engaged in a constant cycle of defense and counter-defense as part of a molecular arms race, principal among them being the plant RNAi defense and the viral RNAi suppressor counter-defense. Rice tungro bacilliform virus (RTBV), member of the family Caulimoviridae, genus Tungrovirus, species Tungrovirus oryzae, infects rice in South- and Southeast Asia and causes severe symptoms of stunting, yellow-orange discoloration and twisting of leaf tips. To better understand the possible counter-defensive roles of RTBV against the host RNAi defense system, we explored the ability of the P4 protein of an Indian isolate of RTBV to act as a possible modulator of RNAi. Using a transient silencing and silencing suppression assay in Nicotiana benthamiana, we show that P4 not only displays an RNAi suppressor function, but also potentially enhances RNAi. The results also suggests that the N-terminal 168 amino acid residues of P4 are sufficient to maintain RNAi suppressor activity. Taken together with the earlier reports this work strengthens the view that the P4 protein carries out RNAi suppressor and a potential RNAi enhancer function.


Assuntos
Oryza , Tungrovirus , Tungrovirus/genética , Inativação Gênica , Interferência de RNA , Oryza/genética , Doenças das Plantas/genética
2.
Virology ; 581: 71-80, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921478

RESUMO

BACKGROUND: Rice tungro bacilliform virus (RTBV) is a double stranded DNA containing virus which causes the devastating tungro disease of rice in association with an RNA virus, rice tungro spherical virus. RNA silencing is an evolutionarily conserved antiviral defence pathway in plants as well as in several classes of higher organisms. Many viruses, in turn, encode proteins which are termed Viral Suppressor of RNA Silencing (VSR) because they downregulate or suppress RNA silencing. RESULTS: Using an RNA silencing suppressor assay we show that RTBV protease (PRT) acts as a mild VSR. A truncated version of PRT gene abolished the silencing suppression activity. We also show in planta interaction of PRT with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana using bimolecular fluorescence complementation assay (BIFC). Transient expression of PRT in Nicotiana benthamiana caused an increased accumulation of the begomovirus Sri Lankan cassava mosaic virus (SLCMV) DNA-A, which indicated a virulence function imparted on an unrelated virus. CONCLUSION: The finding supports the idea that PRT acts as suppressor of RNA silencing and this action may be mediated by its interaction with SGS3.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Tungrovirus , Interferência de RNA , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tungrovirus/genética , Peptídeo Hidrolases/metabolismo , Endopeptidases/genética , Doenças das Plantas , Proteínas de Arabidopsis/genética
3.
Mol Plant Microbe Interact ; 27(12): 1370-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25122481

RESUMO

Small interfering RNA (siRNA)-directed gene silencing plays a major role in antiviral defense. Virus-derived siRNAs inhibit viral replication in infected cells and potentially move to neighboring cells, immunizing them from incoming virus. Viruses have evolved various ways to evade and suppress siRNA production or action. Here, we show that 21-, 22-, and 24-nucleotide (nt) viral siRNAs together constitute up to 19% of total small RNA population of Oryza sativa plants infected with Rice tungro bacilliform virus (RTBV) and cover both strands of the RTBV DNA genome. However, viral siRNA hotspots are restricted to a short noncoding region between transcription and reverse-transcription start sites. This region generates double-stranded RNA (dsRNA) precursors of siRNAs and, in pregenomic RNA, forms a stable secondary structure likely inaccessible to siRNA-directed cleavage. In transient assays, RTBV protein P4 suppressed cell-to-cell spread of silencing but enhanced cell-autonomous silencing, which correlated with reduced 21-nt siRNA levels and increased 22-nt siRNA levels. Our findings imply that RTBV generates decoy dsRNA that restricts siRNA production to the structured noncoding region and thereby protects other regions of the viral genome from repressive action of siRNAs, while the viral protein P4 interferes with cell-to-cell spread of antiviral silencing.


Assuntos
Genoma Viral/genética , Oryza/virologia , Doenças das Plantas/virologia , RNA de Cadeia Dupla/genética , Tungrovirus/genética , Proteínas Virais/metabolismo , DNA Complementar/química , DNA Complementar/genética , Expressão Gênica , Biblioteca Gênica , Oryza/genética , Folhas de Planta , Interferência de RNA , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Análise de Sequência de DNA , Nicotiana/virologia , Sítio de Iniciação de Transcrição , Tungrovirus/fisiologia , Proteínas Virais/genética , Replicação Viral
4.
Plant Biotechnol J ; 8(7): 835-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20408988

RESUMO

Rice transcription factor RF2a binds to the BoxII cis element of the promoter of rice tungro bacilliform virus and activates promoter expression. The acidic acid-rich domain of RF2a is a transcription activator and has been partially characterized (Dai et al., 2003). The RF2a acidic domain (A; amino acids 49-116) was fused with the synthetic zinc finger ZF-TF 2C7 and was co-introduced with a reporter gene into transgenic Arabidopsis plants. Expression of the reporter gene was increased up to seven times by the effector. In transient assays in tobacco BY-2 protoplasts, we identified a subdomain comprising amino acids 56-84 (A5) that was equally as effective as an activator as the entire acidic domain. A chemically inducible system was used to show determined that A and A5 domains are equally as effective in transcription activation as the well-characterized VP16 activation domain. Bioinformatics analyses revealed that the A5 domain is present only in b-ZIP transcription factors. In dicots, the A domain contains an insertion of four amino acids that is not present in monocot proteins. The A5 domain, and similar domains in other b-ZIP transcription factors, is predicted to form an anti-parallel beta sheet structure.


Assuntos
Oryza/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Computacional , Dados de Sequência Molecular , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Nicotiana/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Transformação Genética , Tungrovirus/genética
5.
Plant Mol Biol ; 65(3): 259-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17721744

RESUMO

An Indian isolate of Rice tungro bacilliform virus from West Bengal (RTBV-WB) showed significant nucleotide differences in its putative promoter region when compared with a previously characterized isolate from Philippines. The transcription start site of RTBV-WB was mapped followed by assessing the activity and tissue-specificity of the full-length (FL) promoter (-231 to +645) and several of its upstream and downstream deletions by studying the expression of beta-Glucuronidase (GUS) reporter gene in transgenic rice (Oryza sativa L. subsp. indica) plants at various stages of development. In addition to the expected vascular-specific expression pattern, studied by histochemical staining, GUS enzymatic assay and northern and RT-PCR analysis, two novel patterns were revealed in some of the downstream deleted versions; a non-expressing type, representing no expression at any stage in any tissue and constitutive type, representing constitutive expression at all stages in most tissues. This indicated the presence of previously unreported positive and negative cis-regulatory elements in the downstream region. The negative element and a putative enhancer region in the upstream region specifically bound to rice nuclear proteins in vitro. The FL and its deletion derivatives were also active in heterologous systems like tobacco (Nicotiana tabacum) and wheat (Triticum durum). Expression patterns in tobacco were different from those observed in rice suggesting the importance of upstream elements in those systems and host-specific regulation of the promoter in diverse organisms. Thus, the RTBV-WB FL promoter and its derivatives contain an array of cis-elements, which control constitutive or tissue- and development-specific gene expression in a combinatorial fashion.


Assuntos
Regulação da Expressão Gênica , Oryza/virologia , Regiões Promotoras Genéticas/genética , Tungrovirus/genética , Sequência de Bases , Northern Blotting , Glucuronidase/genética , Glucuronidase/metabolismo , Interações Hospedeiro-Patógeno , Índia , Dados de Sequência Molecular , Oryza/genética , Filipinas , Plantas Geneticamente Modificadas , Sequências Reguladoras de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Nicotiana/genética , Sítio de Iniciação de Transcrição , Tungrovirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA